自动柜员机(ATM)代表最常用的撤销现金系统。欧洲中央银行于2019年报告了110亿美元的现金提取和在欧洲ATM上装载/卸载交易。虽然ATM经历了各种技术演变,但个人识别号码(PIN)仍然是这些设备的最常见的认证方法。不幸的是,PIN机构容易通过安装在ATM附近的隐藏照相机进行的肩部冲浪攻击来捕获针脚垫。为了克服这个问题,人们习惯于另一方面覆盖打字。虽然这些用户可能相信这种行为足够安全,但无法防范提到的攻击,但对科学文献中的这种对策没有明确评估。本文提出了一种新的攻击,以重建被另一方面覆盖着键入的受害者进入的别针。我们考虑攻击者可以访问与目标相同品牌/型号的ATM引脚垫的设置。之后,攻击者使用该模型推断受害者在进入PIN的同时按下的数字。我们的攻击归功于精心选择的深度学习架构,可以从打字的手势和运动中推断出别针。我们运行详细的实验分析,包括58个用户。通过我们的方法,我们可以猜出三次尝试中的5位点引脚的30% - 在阻塞卡之前通常允许的那些。我们还对78名用户进行了一项调查,该调查设法达到了相同的设置平均仅为7.92%的准确性。最后,除非整个键盘被屏蔽,否则我们评估了被证明的屏蔽反应。
translated by 谷歌翻译
分销转移(DS)是一个常见的问题,可恶化学习机器的性能。为了克服这个问题,我们假设现实世界的分布是由基本分布组成的,这些分布在不同域之间保持不变。我们将其称为不变的基本分布(即)假设。因此,这种不变性使知识转移到看不见的域。为了利用该假设在域概括(DG)中,我们开发了一个由门域单位(GDU)组成的模块化神经网络层。每个GDU都学会了单个基本领域的嵌入,使我们能够在训练过程中编码域相似性。在推断期间,GDU在观察和每个相应的基本分布之间进行了计算相似性,然后将其用于形成学习机的加权集合。由于我们的层是经过反向传播的训练,因此可以轻松地集成到现有的深度学习框架中。我们对Digits5,ECG,CamelyOn17,IwildCam和FMOW的评估显示出对训练的目标域的性能有显着改善,而无需从目标域访问数据。这一发现支持了即现实世界数据分布中的假设。
translated by 谷歌翻译
以前的工作定义了探索性抓握,其中一个机器人迭代地抓住并丢弃一个未知的复杂多面体物体,以发现一组稳定的掌握对象的每个识别的不同稳定的姿势。最近的工作用来了一个多武装强盗模型,每种姿势一小组候选麦克风;但是,对于具有少数成功Grasps的物体,该组可能不包括最强大的掌握。我们展示了学习高效的掌握装置(腿),这是一种算法,可以通过构建大型有希望的掌握的小型活跃的掌握,并使用学习的信心范围来确定何时何时置信,它可以停止探索对象。实验表明,腿可以比不学习活动集的现有算法更有效地识别高质量的掌握。在仿真实验中,我们测量腿部和基线所识别的最佳掌握的成功概率与真正最强大的掌握的最佳差距。经过3000个探索步骤后,腿部优于14个Dex-Net对手的10个中的基线算法和39 egad的25个!对象。然后,我们开发一个自我监督的掌握系统,机器人探讨了人类干预最小的掌握。 3对象的物理实验表明,腿将从基线收敛到高性能的GRASPS比基线更快。有关补充材料和视频,请参阅\ url {https://sites.google.com/view/legs-exp-grasping}。
translated by 谷歌翻译